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Abstract
A necessary and sufficient condition for the occurrence of the quantum Zeno
effect is given, refining a recent conjecture of Luo, Wang and Zhang. An
analogous condition is derived for the quantum anti-Zeno effect. Both results
rely on a formal connection between the quantum (anti-)Zeno effect and the
weak law of large numbers.

PACS numbers: 03.65.Ta, 02.50.Cw

1. Introduction

Consecutive observation of an unstable quantum system influences the decay behaviour of
the system. If the decay is decelerated as a function of increasing observation frequency, this
behaviour is referred to as the quantum Zeno effect. The limit of no decay at all for continuous
observations, associated with survival probability one and paraphrased by the metaphor ‘a
watched pot never boils’, was first pointed out by Misra and Sudarshan (1977). Since then,
considerable progress has been made towards the theoretical understanding and experimental
investigation of the effect (Itano et al (1990), Peres (1993), Namiki et al (1997), Facchi
et al (2001), Roy (2001), Misra and Antoniou (2003), Gutiérrez-Medina et al (2003); see also
Gustafson (2003) for some historical and other comments).

The quantum Zeno effect implies non-exponential contributions to the statistical decay
law. In addition, it connects to the uncertain relationship between time and energy. More
recently, the quantum anti-Zeno effect has been described according to which the decay of
an unstable system is accelerated rather than decelerated (Kofman and Kurizki 2000). See
Roy (2001) and Misra and Antoniou (2003) for reviews and Gutiérrez-Medina et al (2003) for
recent experimental observations.
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Consider an unstable quantum state |ψ〉 evolving under the Hamiltonian H. Criteria for
the occurrence of the quantum Zeno effect can be given in terms of the survival amplitude
A(t) = 〈ψ | e−itH |ψ〉 of |ψ〉. According to the literature, the condition

lim
n→∞ |A(t/n)|2n = 1 for every t ∈ R (1)

provides a compact mathematical characterization of the quantum Zeno effect in terms of
the limiting behaviour of the survival probability |A|2 for an increasing number n of one-
dimensional projection measurements within a given time interval. An expansion of both |ψ〉
and | e−itH ψ〉 in energy eigenstates shows that the survival amplitude can be expressed as the
Fourier transform of the state energy (probability) density |λ(E)|2,

A(t) =
∫

e−itE |λ(E)|2 dE.

The problem is thus recast into a probabilistic framework, in which Luo et al (2002) formulated
and established conditions for the quantum Zeno effect on the basis of general results for
characteristic functions (i.e., Fourier transforms) and moments of probability distributions.
They proved that (1) holds true if the first absolute moment of the state energy distribution
is finite, i.e. if

∫ ∞
−∞ |E||λ(E)|2 dE < ∞, and they conjectured that this condition is also

necessary.
In this paper, we show that the occurrence of the quantum Zeno effect actually depends

on more subtle features of the state energy distribution, and that these are connected to the
weak law of large numbers. The key observation leading to this conclusion is an alternative
interpretation of the term A(t/n)n as the characteristic function of the mean value of n energy
measurements for an ensemble of identical quantum systems prepared in the state |ψ〉. This
interpretation differs from the usual one according to which A(t/n)n represents the probability
amplitude of finding the state |ψ〉 undecayed in n consecutive energy measurements at times
t/n, 2t/n, . . . , t. Nevertheless, A(t/n)n is the crucial quantity for both situations.

In sections 2 and 3, we formulate and prove two theorems establishing necessary and
sufficient conditions for the quantum Zeno and anti-Zeno effect, respectively. Section 4
contains a summary and discussion of the results.

2. Quantum Zeno effect

Our probabilistic framework involves independent random variables X1, X2, . . . distributed
with the common law Pr(Xk < x) = F(x). Here F is a probability distribution function on
the real line R, i.e., a nondecreasing, left continuous function with limx→−∞ F(x) = 0 and
limx→∞ F(x) = 1. Its characteristic function or Fourier transform is given by

ϕ(t) =
∫ ∞

−∞
e−itx dF(x).

Applied to the quantum Zeno effect, F corresponds to the state energy distribution, the random
variables Xk correspond to the outcomes of energy measurements of the individual systems
forming the ensemble, and ϕ(t) corresponds to the survival amplitude A(t). The distribution
function F may have discontinuities, thus covering the general case of a spectrum with both
continuous and discrete components. Its decay at infinity will be characterized by the quantity

δF (x) = x Pr(|Xk| > x) = x(F (−x) + 1 − F(x)) x � 0

where the second equality holds at all points of continuity of F.
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Theorem 1. Under the above conditions the following three statements are equivalent:

(a) limn→∞ |ϕ(t/n)|2n = 1 for every t ∈ R.
(b) limx→∞ δF (x) = 0.
(c) For all ε > 0 we have

lim
n→∞ inf

µ∈R

Pr

(∣∣∣∣X1 + · · · + Xn

n
− µ

∣∣∣∣ > ε

)
= 0

i.e., there exists a sequence of real numbers µn such that the distribution of the re-centred
averages (X1 + · · · + Xn)/n − µn converges weakly to the Dirac measure at zero.

Proof. The weak law of large numbers in probability theory, theorem 1 of Feller (1971,
p 235), states the equivalence of (b) and (c). Hence, it suffices to prove the equivalence of
(a) and (b). Clearly, condition (a) holds if and only if

lim
n→∞(γ (t/n))n = 1 for every t ∈ R (2)

where γ (t) = |ϕ(t)|2. Note that γ is the characteristic function of the difference Y = X′ −X′′

of independent random variables X′, X′′ each with distribution F. Let G denote the distribution
function of Y. Then γ (t/n)n is the characteristic function of the mean (Y1 + · · · + Yn)/n of
independent random variables Y1, Y2, . . . with common distribution G. By the continuity
theorem for characteristic functions, (2) holds if and only if the averages (Y1 + · · · + Yn)/n

converge to zero in distribution. Again by the weak law of large numbers, and since G is a
symmetric distribution, condition (2) is equivalent to

lim
x→∞ δG(x) = 0. (3)

According to the symmetrization inequalities in lemma 1 of Feller (1971, p 149), there exists
a real number a such that for all x > 0 one has

1

2
Pr(|X′| > x + a) � Pr(|X′ − X′′| > x) � 2 Pr

(
|X′| >

x

2

)
. (4)

It follows that (3) and (b) are equivalent, hence (a) and (b) are equivalent as well. The proof
of theorem 1 is complete. �

If the first absolute moment M1(F ) = ∫ ∞
−∞ |x| dF(x) of F is finite then

lim
x→∞ δF (x) = lim

x→∞

(∫ −x

−∞
y dF(y) +

∫ ∞

x

y dF(y)

)

� lim
x→∞

(∫ −x

−∞
|y| dF(y) +

∫ ∞

x

|y| dF(y)

)

= M1(F ) − lim
x→∞

∫ x

−x

|y| dF(y) = 0

so that condition (b) holds. However, there exist distribution functions F for which M1(F ) is
infinite whereas (b) remains valid, such as the distribution function defined by

F(x) = 1 − e

x ln x
x � e

and F(x) = 0 for x � e. This provides an explicit counterexample to the aforementioned
conjecture of Luo et al (2002), showing that the quantum Zeno effect can occur even if the
state energy distribution does not have a finite first moment. For large x, corresponding to high
energies E, the density function F ′(x) in the above example differs from the Breit–Wigner
distribution with the density function π−1(1 + x2)−1 by a logarithmic factor. Luo et al (2002)
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treated the Breit–Wigner distribution as the special case ν = 1/2 of a parametric family of
probability densities of the form fν(x) = c(ν)(1 + x2)−ν−1/2 and noted that it corresponds to
a critical case separating the quantum Zeno and anti-Zeno effect within this family. Indeed,
for ν > 1/2 condition (b), hence (a) holds, whereas for ν < 1/2 one has

lim
n→∞ |ϕ(t/n)|2n = 0 for t �= 0 (5)

where ϕ(t) = ∫ ∞
−∞ e−itxfν(x) dx denotes the characteristic function of the density fν . The

criterion (5) is dual to (a) and is used here, following Luo et al (2002), to characterize the
quantum anti-Zeno effect. This qualitative definition of the anti-Zeno effect refers to the short-
time behaviour of the survival amplitude and differs from other formulations in the literature;
related comments may be found in section 4.

3. Quantum anti-Zeno effect

In theorem 2 we show that the quantity δF (x) = x(F (−x) + 1 − F(x)) not only characterizes
the decay behaviour of the state energy distribution required for the quantum Zeno effect as
in theorem 1, but plays an analogous role for the quantum anti-Zeno effect (as characterized
by (5)), apart from a mild regularity condition. We say that F is a straight distribution
function if either supx>0 δF (x) < ∞ or limx→∞ δF (x) = ∞. This excludes the case where
lim supx→∞ δF (x) = ∞ while limx→∞ δF (x) does not exist. Roughly speaking, straightness
of F requires that the energy spectrum has no sequence of gaps of increasing lengths.

Theorem 2. For straight distribution functions F the following three conditions are equivalent:

(d) limn→∞ |ϕ(t/n)|2n = 0 in measure, i.e., for all T > 0 and ε > 0 the Lebesgue measure
of the set of all |t | < T with |ϕ(t/n)|2n > ε converges to zero.

(e) limx→∞ δF (x) = ∞.
(f) For all c > 0 we have

lim
n→∞ sup

µ∈R

Pr

(∣∣∣∣X1 + · · · + Xn

n
− µ

∣∣∣∣ � c

)
= 0

i.e., the distribution of the average (X1 + · · · + Xn)/n becomes entirely spread out as
n → ∞.

Proof. The concentration function of a distribution function H is defined as the maximal
H-probability of an interval of length 	,

QH(	) = sup
x∈R

(H(x + 	/2) − H(x − 	/2)).

Let η be the characteristic function of H. The main lemma of Esseen (1968) states that there
exist constants C1 and C2 such that for every b > 0 and every a satisfying 0 < a � π/	, one
has

C1
	

1 + 2b	

∫ b

−b

|η(t)|2 dt � QH(	) � C2a
−1

∫ a

−a

|η(t)| dt. (6)

The equivalence of conditions (d) and (f) is an immediate consequence of these inequalities.
Indeed, put H = Hn where Hn(x) = Pr((X1 + · · · + Xn)/n � x) is the distribution function
of the random variable (X1 + · · · + Xn)/n. Then η(t) is the characteristic function ϕ(t/n)n of
Hn. Since characteristic functions are uniformly bounded in absolute value, the two integrals
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in (6) tend to zero if and only if (d) holds. The equivalence of (d) and (f) then is immediate
upon noting that

sup
µ∈R

Pr

(∣∣∣∣X1 + · · · + Xn

n
− µ

∣∣∣∣ � c

)
= QHn

(2c).

The proof that (e) implies (d) again uses symmetrization. Let

�G(x) =
∫

|y|�x

(y/x)2 dG(y) +
∫

|y|>x

dG(y)

for x > 0, where G is defined as in the proof of theorem 1. An application of theorem 3.1 of
Esseen (1968) shows that there exists a constant C such that for every 	 > 0

QHn
(	) � C(n�G(n	))−1/2 (7)

with Hn as defined above. Putting 	 = 1 in (6) and (7) and using the trivial estimate
n�G(n) � δG(n) gives

C1

1 + 2b

∫ b

−b

|ϕ(t/n)|2n dt � QHn
(1) � CδG(n)−1/2

for every b > 0. By the symmetrization inequalities (4), condition (e) is equivalent to
limx→∞ δG(x) = ∞. Hence, the chain of inequalities shows that (e) implies (d).

It remains to prove that, conversely, (d) implies (e). Putting again γ = |ϕ|2 and writing

|ϕ(t/n)|2n =
(

1 − n(1 − γ (t/n))

n

)n

shows that n(1 − γ (t/n)) becomes large if and only if the left-hand side becomes small.
Therefore, (d) implies that exp(−n(1 − γ (t/n))) converges to zero in measure. Jensen’s
inequality (Feller 1971, p 153) then gives

lim
n→∞ exp

(
−

∫ 1

0
n(1 − γ (t/n)) dt

)
� lim

n→∞

∫ 1

0
exp(−n(1 − γ (t/n))) dt = 0

so that

lim
n→∞

∫ 1

0
n(1 − γ (t/n)) dt = ∞.

Another classical inequality (Loève 1960, pp 195–6) applied to the characteristic function
γ (t/n) of the distribution function Gn(x) = G(nx) shows that there exists a constant C0 > 0
such that

C0

∫ 1

0
(1 − γ (t/n)) dt �

∫ ∞

−∞

x2

1 + x2
dGn(x) � �Gn

(1) = �G(n).

Consequently, limn→∞ n�G(n) = ∞. Suppose then that lim supn→∞ δG(n) < ∞. Integration
by parts applied to the first term of n�G(n) gives

n

∫
|x|�n

(x/n)2 dG(x) = 1

n

∫ n

0
2δG(x) dx − δG(n)

which implies that lim supn→∞ n�G(n) < ∞. The contradiction shows that we have
lim supn→∞ δG(n) = ∞, hence lim supn→∞ δF (n) = ∞ by (4), and since F is straight
(e) holds. The proof of theorem 2 is complete. �
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4. Summary and discussion

Refining recent work by Luo et al (2002), we formulate and prove two theorems providing
necessary and sufficient conditions for the quantum Zeno and anti-Zeno effect in a unified
manner, by connecting these effects to the weak law of large numbers. The conditions refer
to the survival probability of an unstable quantum state, its state energy distribution, and the
distribution of the ensemble average of related energy measurements.

The relation between the quantum (anti-)Zeno effect and the weak law of large numbers
draws on the fact that the survival amplitude of an unstable quantum state during n repeated
measurements at successive times t/n, 2t/n, . . . , t may also be interpreted as the characteristic
function of an ensemble average. In physical terms, the two theorems express examples for
the complementarity of time and energy and refer to corresponding time–energy uncertainty
relations: a large survival probability, corresponding to a long lifetime of an unstable state,
is related to a narrow energy distribution in the case of the Zeno effect, and vice versa in the
case of the anti-Zeno effect.

The critical situation at the transition between Zeno and anti-Zeno behaviour corresponds
to a state energy distribution F for which the probability of measuring an energy larger than E
decays roughly such as E−1. This situation also describes a critical region with respect to the
weak law of large numbers. Depending on the precise decay behaviour of F, the distribution
of the ensemble average of energy measurements may either shrink to a single value (Zeno
effect), or spread out entirely (anti-Zeno effect), or stay within a bounded region essentially
as the number n of measurements becomes large.

In the literature (e.g., Facchi et al 2001), the quantum (anti-)Zeno effect is often defined
in terms of deviations from a characteristic exponential decay behaviour of the function
τ �→ P(τ)n = |A(τ)|2n. This function represents the survival probability of an unstable
quantum system at time t = nτ if n measurements are made at equal temporal distances τ

within the interval [0, t]. According to Fermi’s ‘golden’ rule, the overall decay of P(τ)n as
a function of total measurement time t = nτ goes roughly as e−γ0t , with γ −1

0 the ‘natural’
lifetime. However, there may be an initial period where P(τ)n exceeds e−γ0nτ (for instance if
P(τ) has a quadratic short-time behaviour), followed by an intermediate period where P(τ)n

falls below e−γ0nτ . In the first case, the effective decay rate is smaller than γ0, giving rise to the
quantum Zeno effect, while in the second case it exceeds γ0, so the decay is accelerated for
such values of τ and the anti-Zeno effect occurs. The exact exponential decay as in Fermi’s
rule, P0(τ )n = e−γ0nτ , implies an invariance property with respect to n, namely

P0(t/n)n = e−γ0nt/n = e−γ0t = P0(t)

independently of n. Thus the re-scaling τ = t/n applied in our approach focuses on those
times τ between measurements for which P0(τ )n shows a non-trivial behaviour as n tends to
infinity, permitting proper distinction between decelerated and accelerated decay. Deviations
from an exponential decay are scaled up by the asymptotics n → ∞, and in the limit the
survival probabilities reduce to 1 and 0, respectively. Our theorems give the exact conditions
for either of the two alternatives.

Basically, in Facchi et al (2001) and elsewhere, the number n of measurements is fixed,
and the time τ between measurements and the total measurement period t = nτ are varied.
In the present paper t is fixed, and n and τ = t/n are varied. In particular, τ becomes small
as n → ∞ and the short-time evolution of P(τ) (or else, the precise decay of the energy
distribution) is decisive for the distinction between Zeno and anti-Zeno behaviour within the
bounded measurement interval [0, t]. Our approach thus does not cover anti-Zeno behaviour
at later times, preceded by an initial Zeno period.
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